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Abstract Growing evidence has indicated that GM1
ganglioside specifically interacts with Amyloid β-peptide
(Aβ) and thereby promotes Alzheimer’s disease-associated
Aβ assembly. To characterize the conformation of Aβ
bound to the ganglioside, we performed 920 MHz ultra-
high field NMR analyses using isotopically labeled Aβ(1–
40) in association with GM1 and lyso-GM1 micelles. Our
NMR data revealed that (1) Aβ(1–40) forms discontinuous
α-helices at the segments His14-Val24 and Ile31-Val36 upon
binding to the gangliosidic micelles, leaving the remaining

regions disordered, and (2) Aβ(1–40) lies on hydrophobic/
hydrophilic interface of the ganglioside cluster exhibiting an
up-and-down topological mode in which the two α-helices
and the C-terminal dipeptide segment are in contact with the
hydrophobic interior, whereas the remaining regions are
exposed to the aqueous environment. These findings suggest
that the ganglioside clusters serve as a unique platform for
binding coupled with conformational transition of Aβ
molecules, rendering their spatial rearrangements restricted
to promote specific intermolecular interactions.
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Abbreviations
Aβ Amyloid β-peptide
AD Alzheimer’s disease
CD Circular dichroism
HSQC Heteronuclear single-quantum correlation
NMR Nuclear magnetic resonance
PG Phosphatidylglycerol
TROSY Transverse relaxation-optimized spectroscopy

Introduction

Alzheimer’s disease (AD) is associated with the progressive
accumulation of amyloid deposits in the brain and is
pathologically diagnosed through the formation of the
extracellular senile plaques and intracellular neurofibrillary
tangles [1]. The major component of plaques is a 4-kDa
peptide known as amyloid β-peptide (Aβ), consisting of 40
or 42 amino acid residues with a high propensity for
aggregation to form cross-β-fibrils [2, 3]. While the
conversion of soluble, nontoxic, monomeric Aβ to its
insoluble, toxic, aggregated form has been considered to be
a crucial step in AD [1], the soluble Aβ oligomers have
recently been proposed to be the primary toxic Aβ species
in AD [4]. In the case of familial AD, the expression of
responsible genes likely results in the enhancement of Aβ
generation and/or assembly; however, no evidence has so
far been provided to indicate an increased level of Aβ
production in sporadic AD [1, 5]. Thus, it remains to be
elucidated how the Aβ assembly is accelerated in the brain
in age-dependent and region-specific manners.

Yanagisawa et al. have previously identified a unique
Aβ species in cerebral cortices from AD patients, that is
tightly associated with GM1 ganglioside, a glycosphingo-
lipid abundant in neuronal membranes [6]. A series of in
vitro studies have indicated that the GM1-bound Aβ
exhibits an extremely high potential to facilitate Aβ
assembly [7]. Thus, this Aβ species has been proposed to
act as a seed for Aβ fibrillogenesis in the brain [8].
Furthermore, an enhanced formation of a GM1-induced
toxic soluble Aβ(1–40) assembly has been reported in a
hereditary variant-type Aβ termed Arctic [9]. It is also
noteworthy that Aβ(1–40) forms toxic fibrils upon specific
interaction with GM1 micelles [10]. Hence, the structural
characterization of the GM1-interacting Aβ species is
crucial for understanding the molecular mechanisms under-
lying the onset and the development of AD.

On the basis of the circular dichroism (CD) data, Kakio
et al. have demonstrated that Aβ undergoes a conforma-
tional transition from an α-helix-rich structure to a
β-sheet-rich structure when Aβ density increases on
GM1-containing liposomes [11]. Their CD data along with

fluorescence spectroscopic data have also indicated that
GM1 micelles provide a binding platform for Aβ, closely
mimicking the GM1-containing raft-like membranes. A
recent NMR study has shown that small but significant
chemical shift perturbations were induced for the amino
acid residues localized within the N-terminal region of Aβ
upon titration of GM1 micelles under Aβ-excess conditions
[12]. However, no detailed structural study has so far been
reported on the Aβ molecules tightly bound to GM1
clusters because the molecular size of their complex has
been considered to exceed the size limitation of conven-
tional high-resolution NMR analyses.

In the previous studies, we have demonstrated that
920 MHz ultra-high field NMR spectroscopic techniques
provide improved spectral resolution and sensitivity, which
are extremely advantageous in the structural analyses of
biological macromolecules [13, 14]. In view of this
situation, we herein characterize the conformation of
Aβ(1–40) bound to the micelles of GM1 and lyso-GM1
using stable-isotope-assisted ultra-high field NMR spec-
troscopy. We successfully applied these techniques to the
structural analyses of 2H-, 13C- and 15N-labeled Aβ(1–40)
and thereby obtained detailed information about its confor-
mation in association with the glycolipid micelles.

Materials and methods

Materials

Powdered bovine brain GM1 ganglioside and lyso-GM1
were purchased from Sigma-Aldrich and from Takara
Bio Inc., respectively. GM1-pentasaccharide, Galβ1→3-
GalNAcβ1→4(Neu5Acα2→3)Galβ1→4Glc, was from
IsoSepAB. Choresterol, L-α-phosphatidylglycerol-
DL-glycerol sodium salt (PG) from egg yolk lecithin and
sphingomyelin (SM) from bovine brain were purchased
from Sigma-Aldrich.

Construction of plasmids

The expression vector encoding Aβ(1–40) was constructed
as described in the literature [15] with slight modifications.
The DNA fragment encoding Aβ(1–40) was amplified by
the PCR from cDNA of full-length human Amyloid
Precursor Protein as a template with the following primers:
5 ’ ′ -GTCTACTCTTCATCTTGTCTTAAGACTTC
GTGGTGGTTAAC-3’′ and 5’′-GTTAACCACCACGAAG
TCTTAAGACAAGATGAAGAGTAGAC-3’′. The AflII
site was introduced into a DNA encoding ubiquitin (Ub)
using the site-directed mutagenesis method with the
following primers: 5’′-TTTCTTAAGACTTCGTGGTGG
TGATGCAGAATTCCGACAT-3 ’ ′ and 5 ’ ′ -ATG
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GTGGGCGGTGTTGTCTAACTCGAGTTT-3’′. The DNA
fragment corresponding to Ub-fused Aβ(1–40) was cloned
into pET28a(+) plasmid vector (Novagen) with an N-
terminal hexa-histidine tag moiety.

Expression and purification of Aβ(1–40)

The expression and purification of recombinant Aβ(1–40)
were performed as described in the literature with slight
modifications [15]. For the production of isotopically
labeled Aβ(1–40) protein, cell were grown in M9 minimal
media containing [15N]NH4Cl (1 g/L), [U-13C6] glucose
(2 g/L) and/or 2H2O. Aβ(1–40) was dissolved at an
approximate concentration of 2 mM in 0.1% (v/v) ammonia
solution then collected and stored in aliquots at −80°C until
use.

Preparation of micelles and vesicles

GM1 and lyso-GM1 was dissolved in methanol. The
solvent was removed by evaporation in a rotary evaporator.
The residual ganglioside was suspended at a concentration
of 12 mM in 10 mM potassium phosphate buffer (pH 7.2)
containing 0.5 mM EDTA and 0.05 mM NaN3, and then
vortex-mixed. A suspension of PG vesicles was prepared in
a similar manner. Micelle sizes were determined by
dynamic light scattering using a DynaPro Titan (Wyatt
technology). Large unilameller vesicles composed of GM1/
choresterol/SM (40:30:30) were prepared according to the
literature [16], except that we used the buffer described
above.

Dot blot analysis

Mouse monoclonal antibodies 6E10 (COVANCE), 4G8
(COVANCE), and 1A10 (IBL), which are directed against
the amino acid residues 1–10, 17–24, and 35–40, respec-
tively, of human Aβ(1–40), were used for the dot blot
analysis. Aβ(1–40) (0.2 mM), GM1 (6 mM) and their
mixture with a 1:30 molar ratio of Aβ(1–40) and GM1
were incubated at 4°C for 1 hr and blotted onto nitrocel-
lulose membranes (GE Osmonics) as described elsewhere
[8]. The blots were reacted with 6E10 (1:10,000), 4G8
(1:5,000) or 1A10 (1:500), and subsequently with horse-
radish peroxidase-conjugated anti-mouse IgG (Cell Signal-
ing Tec). The bound-enzyme activities were visualized with
an enhanced chemiluminescence system (GE Healthcare).

CD measurements

Aβ(1–40) was dissolved at a concentration of 0.05 mM in
10 mM potassium phosphate buffer (pH 7.2) containing
0.5 mM EDTA and 0.05 mM NaN3. CD spectra were

measured at 37°C on a Jasco J-725 apparatus, using a
1.0-mm path length quartz cell. Eight scans were averaged
for each sample. The averaged blank spectra were subtracted.

NMR measurements

NMR spectral measurements were made on a JEOL EC-
920 spectrometer employing GORIN application [17] as
well as a Bruker DMX-500 spectrometer equipped with a
cryogenic probe. The probe temperature was set to 37°C.
Isotopically labeled Aβ(1–40) was dissolved at a concen-
tration of 0.2 mM in 10 mM potassium phosphate buffer
containing 0.5 mM EDTA, 0.05 mM NaN3 and 10% (v/v)
2H2O in the presence or absence of 6 mM GM1 or lyso-
GM1. For 1H-15N TROSY measurements [18], the spectra
were recorded using 2H- and 15N-labeled Aβ(1–40) at a 1H
observation frequency of 920 MHz with 96 (t1) x 1024 (t2)
complex points and 128 scans per t1 increment. The
spectral width was 2,760 Hz for the 15N dimension and
11,040 Hz for the 1H dimension. The 1H, 13C, and 15N
resonances of the backbone were assigned using a standard
set of double- and triple-resonance experiments [19]. NMR
spectra were processed and analyzed with the program
nmrPipe/Sparky. 1H chemical shifts were referenced to
external 2,2-dimethyl-2-silapentane-5-sulfonic acid (DSS),
while 13C and 15N chemical shifts were indirectly
referenced to DSS by using the absolute frequency ratios.
Secondary structural elements were identified based on the
backbone chemical shifts by using the program TALOS
[20]. For the saturation transfer experiments [21, 22],
1H-15N TROSY spectra were recorded using 2H- and 15N-
labeled Aβ(1–40) peptide with on-resonance irradiation
at 1.3 ppm (the acyl chains of lyso-GM1 or GM1) and at
4.69 ppm (H2O) along with off-resonance irradiation at
40.0 ppm by continuous wave technique with an irradiation
duration of 2.5 s. The strength of the irradiation field was
adjusted to 24 Hz and 63 Hz for the saturation of water and
the acyl chains, respectively, in the experiments by
observing Aβ(1–40) bound to GM1 micelles, while a
saturating field of 64 Hz was used for observation of lyso-
GM1-bound Aβ(1–40).

Results and discussion

Overall structure of GM1-bound Aβ

For structural characterization of Aβ(1–40) bound to GM1
micelles, we first examined its reactivity with the mono-
clonal antibodies directed against the different parts of the
Aβ(1–40) molecules. The dot blot analysis showed that the
reactivity to 4G8 and 1A10 were significantly compro-
mised in the presence of the GM1 micelles, while 6E10 was
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bound to Aβ(1–40) in a GM1-independent manner (Fig. 1).
These data suggest that the N-terminal region (Ala1 - Tyr10)
of Aβ(1–40) is exposed, whilst the middle (Leu17-Val24)
and the C-terminal (Met35-Val40) regions are buried in the
GM1 micelles.

The CD data indicated that Aβ(1–40) adopts an α-
helical structure upon binding to the GM1 micelles whereas
neither the PG vesicles nor the carbohydrate moiety
released from GM1 induced such conformational change
(Fig. 2). The inability of Aβ(1–40) to interact with PG and
with the isolated pentasaccharide has been consistent with
what was previously reported [12, 23, 24]. Intriguingly, the
smaller lyso-GM1 micelles also interacted with Aβ(1–40)
and thereby induced its α-helix formation as the larger
GM1 micelles and the GM1-containing liposome did
(Fig. 2 and Supplementary Fig. 1). These data suggest that
the specific carbohydrate moieties clustered on a hydro-
philic/hydrophobic interface are prerequisites for the inter-
action of Aβ(1–40) and its consequent conformational
alteration.

Interaction mode of Aβ with ganglioside clusters

To provide a more detailed understanding of the interaction
mode of Aβ and gangliosides, we attempted to carry out
high resolution NMR analyses. Dynamic light scattering
data showed that lyso-GM1 and GM1 form large micelles
with approximate molecular masses of 60 kDa and
140 kDa, respectively, which hamper conventional NMR
analyses due to severe line-broadening resulting from

slower molecular tumbling. To cope with this difficulty,
we performed ultra-high field NMR analyses of isotopically
labeled Aβ(1–40) bound to the micelles. 1H-15N TROSY
spectral data indicated that lyso-GM1 and GM1 micelles
cause chemical shift changes for most of the Aβ(1–40)
residues in similar fashions (Fig. 3 and Supplementary
Fig. 2). The torsion angle prediction based on the backbone
chemical shifts of Aβ(1–40) (Supplementary Table 1)
revealed that the segments His14 - Val24 and Ile31-Val36

form two discontinuous α-helices flanked by the N- and C-
terminal random-coil regions upon binding to lyso-GM1
micelles (Fig. 4a). The α-helical content calculated from
the CD data (ca. 23%) was significantly lower than what is
expected from the NMR-based estimation. Discrepancies in
α-helical contents between CD and NMR measurements
have been widely recognized because far-ultraviolet CD of
peptides are generally influenced by helix fraying and non-
ideal helix geometry and by the presence of aromatic
residues in a helical segment resulting in underestimation of
the helical content [25]. It has been reported that the two α-
helices are formed in the almost corresponding regions of
Aβ(1–40) molecules in organic solvents-containing media
as well as in SDS micelles [26–29].

Deuteration of Aβ(1–40) also prompted us to determine
its position with respect to the gangliosidic micelles by
TROSY-based saturation transfer experiments. In the
present study, the selective irradiation of the complex with
a frequency corresponding to the proton resonances of the
lyso-GM1 acyl chains (CH2) primarily affects the micelles
exclusively, because there exists no aliphatic protons in the
deuterated Aβ(1–40) molecules. Upon the irradiation, the
effective saturation resulted as caused by the proton
resonances originating from the hydrophobic interior of
the micelles, due to spin diffusion, and was further
transferred to the amide groups of Aβ(1–40) in contact
with the hydrophobic environment through the cross-
saturation phenomena [21]. A comparison of the peak
intensities of the amide groups of Aβ(1–40) bound to the
micelles on the 1H-15N TROSY spectra with on-resonance
and off-resonance irradiation allow us to identify the
micelle-buried segments, i.e. Val12-Gly25, Ile31-Val36, and
Val39-Val40. On the other hand, the selective saturation of
H2O resonance resulted in the attenuation of the amide
peaks originating from the regions Glu3-Tyr10 and Ser26-
Ala30 segments, and the Gly37-Gly38 dipeptide, indicating
that these segments were exposed to the aqueous environ-
ment and therefore undergo rapid hydrogen exchange. On
the basis of these obviously complementary profiles of the
effects caused by the CH2 and H2O irradiation, we
conclude that the Aβ(1–40) molecules in association with
the lyso-GM1 micelles exhibit an up-and-down topological
mode in which the two α-helices and the C-terminal Val39-
Val40 dipeptide contact with the hydrophobic interior,

1A10

4G8

6E10

Aβ40

GM1 - +

+

+

+ -

Fig. 1 Dot blot of Aβ(1–40) incubated in the presence and absence of
GM1 micelles. Aβ(1–40), GM1 and a mixture of Aβ(1–40) and GM1
at a 1:30 molar ratio were incubated and blotted onto nitrocellulose
membranes. The blot was reacted with monoclonal antibodies 6E10,
4G8, and 1A10, which are directed against the amino acid residues 1–
10, 17–24, and 35–40, respectively
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whilst the N-terminal segment, the linker connecting the
two helices, and the penultimate Gly37-Gly38 dipeptide are
exposed to water-accessible environment (Fig. 4b). Aβ(1–
40) bound to GM1 micelles exhibited similar saturation
transfer profiles with that of lyso-GM1-bound Aβ(1–40)
although the peaks originating from the segment spanning
residues His13-Phe20 were not detectable due to severe
broadening and the solvent exposure of the Gly37-Gly38

dipeptide was less pronounced (Supplementary Fig. 3). The
dot blot data are consistent with these saturation transfer
data.

Williamson et al. have characterized the interactions of
Aβ(1–40) with GM1 and asialo-GM1 micelles by inspec-
tion of their NMR titration data [12]. They have reported
that the amino acid residues localized to the N-terminal half
of Aβ(1–40) exhibit progressive chemical shift changes,
although subtle, depending on their sialic acid moieties,
while those in the C-terminal half show little or no chemical
shift changes rather loss of peak intensity in sialic acid-
independent manners. On the basis of the direction of the
observed chemical shift change of the amide groups, they
concluded that binding to GM1 micelles causes a confor-
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mational transition from random coil to α-helix in the N-
terminal region, leaving the C-terminal region unstructured.
This apparent discrepancy from our findings can be
explained based on the fact that many of the resonances
affected upon titration under the Aβ(1–40)-excess condi-
tion did not move directly towards the peak position
corresponding to the fully micelle-bound state shown
herein (Supplementary Fig. 2). This means that the
progressive, subtle chemical shift change under the Aβ(1–
40) excess condition occur from a binding process of
Aβ(1–40) to form a weak complex with GM1 micelles in
fast exchange with the free state, as recently observed in
coupled folding and binding of the phosphorylated kinase
inducible activation domain of the transcription factor

CREB onto its target protein [30]. Inspection of all these
data suggests that Aβ(1–40) forms a weak encounter
complex with the gangliosidic micelles through the interac-
tion between its N-terminal region and the sialic acid
moieties and subsequently forms α-helices in its C-terminal
region, which are stabilized presumably by the hydrophobic
interactions with the acyl chains of the glycolipid molecules.

Using NMR and paramagnetic probes, Gräslund and
coworkers have shown that Aβ(1–40) exhibits a similar
positioning in SDS micelles with the exposed N-terminal
segment and the buried α-helices [27]. Noteworthy, they
have demonstrated that the C-terminal segment of Aβ(1–
40) in the SDS micelles is exposed to the Mn2 + ions added
in the solution and exhibits higher mobility [27, 29]. In
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spectrum due to severe broadening. Intensity ratio are the mean±S.D.
of three independent experiments. b The topological model of Aβ(1–
40) lying on ganglioside clusters based on the present NMR data. The
amino acid residues exposed to the hydrophilic and hydrophobic
milieus are represented by closed and open circles with single-letter
codes
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contrast, the present saturation transfer data of Aβ(1–40) in
the lyso-GM1 micelles clearly indicate that the C-terminal
Val39-Val40 dipeptide is inserted into the hydrophobic
interior, while the preceding Gly37-Gly38 dipeptide is
exposed to the solvent. Indeed, deletion of the C-terminal
valine residue of Aβ(1–40) resulted in an impaired binding
to GM1 micelles (M. Utsumi et al. unpublished data).
Conversely, it is possible that the additional hydrophobic
Ile-Ala dipeptide at the C-termini of Aβ(1–42) serves as an
anchor enhancing interaction with the GM1 clusters.
Mandal and Pettegrew have reported that asialo-GM1
embedded in SDS micelles affected conformation and
dynamic of the C-terminal segment of Aβ(1–40) by a
different fashion of interaction with the GM1 micelles used
in the present study [31]. All these data suggest that the
interaction mode of the C-terminal segment of Aβ(1–40) is
influenced by the existence, abundance and structures of
the carbohydrate moieties displayed on micelles.

Accumulating evidence, including the present data,
indicates that the GM1 clusters in lipid bilayers provide a
unique platform for binding, conformational transition, and
subsequent interaction of Aβ molecules [7]. It is easily
conceivable that the up-and-down topological mode
restricts the spatial rearrangements of Aβ molecules on
the hydrophilic/hydrophobic interface and thereby pro-
motes their specific intermolecular interactions. The next
important issue is the structural characterization of putative
Aβ-Aβ interactions on the ganglioside clusters. Applica-
tion of the recently sophisticated NMR techniques [30, 32]
would be a valuable approach for observation of the
transient interactions of Aβ molecules on various gangli-
oside clusters. The structural information provided in the
present study would offer fundamental insights into the
molecular mechanisms of the Aβ action in the pathogenesis
of AD and the opportunity for designing drugs that target
the Aβ molecules bound to the ganglioside clusters in the
brain.
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